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20.   Continued 
in the Wiener adaptive algorithms,   the probability density function P(T) 

for the time delay between a reference sensor and the individual ehannels 
must be specified.    Analytic derivations of this function are presented 
for inverse velocity space models,   distributed ring models,   and velocity- 
azimuth space models.     These derivations are of interest in their own 
right:    they are useful in specifying two-channel crosscorrelation func- 
tions for various directional energy distributions. 
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ABSTRACT 

Tliis report La a mathematical study of time-domain Wiener  adaptive 

multichannel filtering using distributed signal models.    It presents derivations 

for two V'iener adaptive algorithms and describes the basic technique for Im- 

plementing a  Wiener adaptive processor with directionally distributed signal 

models. 

In order to obtain the signal-model crosscorrelation functions needed 

in the Wiener adaptive algorithms,   the probability density function   p(r) for 

ihc time delay between a reference sensor and the individual channels must 

be specified»    Analytic derivations of this function are presented for inverse 

velocity space models,   distributed ring models,   and velocity-azimuth space 

models.    These derivations are of interest in their own right:    they are useful 

in specifying two-channel crosscorrelation functions for various directional 

energy distributions. 

Neither the Advanced Research Projects Agency nor the Air Force 
Technical Applications Center will  De responsible for information contained 
herein which has been supplied by other organizations or contractors,   and this 
document is subject to later  revision as may be necessary.     The views and con- 
clusions presented are those of the authors and should not be interpreted as 
necessarily representing the official policies,   either expressed or implied,   of 
the Advanced Research Projects Agency,   the Air Force  Technical Applications 
Center,  or the US Government. 
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SECTION 1 

INTRODUCTION 

This report presents the results of a mathematic study directed 

toward implementation of Wiener adaptive multichannel filtering with dis- 

tributed signal models. 

Section II discusses the reasons for using this form   of Wiener 

filtering,   derives both an unconstrained Wiener adaptive algorithm and a 

Wiener adaptive algorithm subject to the same unity-response constraints 

as  specified in the maximum likelihood adaptive algorithm,   anri describes 

a  technique for modeling the signal crosscorrclation functions  needed in 

the Wiener adaptive algorithms. 

Sections III through V give analytic derivations for the time-lag 

probability density function corresponding to specific distributed  signal 

models.     The time-lag probability density function p(r) for the time delay 

between the reference sensor and the individual channels is necessary in 

order to obtain the signal-model crosscorrclation functions  in the Wiener 

adaptive algorithms.    Section III features inverse velocity space models, 

Section IV distributed ring models,   and Section V velocity-azimuth space 

models. 

Section VI summarizes the results of diis mathematical  study. 
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SECTION II 

IMPLEMENTATION OF  WIENER ADAPTIVE FILTERING 
WITH DISTRIBUTED SIGNAL MODELS 

A. DISCUSSION 

I 
I 

.. 

A previous adaptive-filtering study (Barnard and O'Brien,   1974) em- 

ployed a maximum likelihood adaptive algorithm where the adaptive filter out- 

put   y(t)    was formed using the equation 

y(t)   =   XTA 

and the adaptive filter vector    A   was updated according to the equation 

A(t+4t) -   A(t) =   2ju(t)XTA(X-X) =  2/u(t)y(t)(X-X) , 

where the filter weight vector    A ,   the data vector   X ,   and the beamsteer out- 

put vector    X    are,   respectively, 

. 

A = 

a1    (-N) 

^aM(-N). 

a1   (0) 

aM(0) 

a1    (N) 

aM(N) 

X  = 

~"~ 

x      (t+N) 
*         • • • 

x(t+N) 
• • • 

_xM (t+N)J 
• ,                •               __ 

Xj     (t) 
• • 

and X = 

x(t+N) 
• 

x(t) 
• • 

• 

x(t) 
—         • • 

x1    (t-N) 
• • 

x(t-N) 
• • • 

XM"-N' 
x(t-N) 

J 

— 
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jlilt) is a scalar quantity controlling the convergence rate.     The superscript T 

denotes vector transpose.     M is the number of channels,   and   2N+1    is the 

total length of the adaptive filter in points.     After time-shifting the input chan- 

nels to align energy from the  specified look direction,   the quantities   x.(t-j) in- 

side the data vector   X    are the values for channel   i   at time   t-jAt ,   where 

At    is the sampling interval.     Inside each subvector of the beamsteer output 

vector   X ,   all vector components are identical and equal to the beamsteer out- 

put 

M 

x(t-j) — y^ x (t-j) 
i=l 

at time    t - jAt. 

When operating against background noise from the Alaska Long Period 

Array (ALPA),   the maximum likelihood adaptive algorithm (as implemented in 

the study mentioned) functioned well and produced 6 dB signal-to-noise-ratio 

improvements with suitably chosen operating parameters.    In interfering-event 

simulations using ALPA data,   the same algorithm produced significant detec- 

tion gains but distorted the on-azimuth signal waveform considerably.     The 

distortion was principally a result of the maximum likelihood design goal 

(minimization of the filter output power   y^(t)    subject to unity-response con- 

straints in the beam look direction).     In conformity with this design goal,   the 

adaptive processor attempted to create from the data sample containing the off- 

azimuth interfering event a filter output 180° out of phase with the  data sample 

containing the on-azimuth event and was partially successful in producing 

mutual cancellation of the two events.     A possible remedy for this problem is 

a Wiener adaptive filtering algorithm,   where the design goal is to minimize 

the mean square difference between the adaptive filter output and the on-azimuth 

signal.    Conceivably,   such an algorithm might even provide substantial detec- 

tion improvement over the maximum likelihood algorithm actually employed. 

11-2 
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The subject of this  section is the basic technique for implementing a 

Wiener adaptive processor using distributed signal models.     Discussion of 

specific distributed signal models is confined to later  sections of this  report. 

Subsection B in this section presents derivations for both an unconstrained 

Wiener adaptive algorithm and a  Wiener adaptive algorithm subject to the same 

unity-response constraints in the look direction as  specified in the maximum 

likelihood adaptive algorithm.     Both of the derived algorithms  require  some 

method for estimating the c rosscorrelation functions  between the signal and 

the cha-nels entering the adaptive beamformer.    Subsection C describes a 

technique for modeling the crosscorrelation functions  needed in the Wiener 

adaptive algorithm. 

B. DEPLVATIONOF WIENER ADAPTIVE FILTERING ALGORITHMS 

In the case of the unconstrained Wiener adaptive filtering algorithm, 

the derivation is relatively straightforward.     The error    e(t)    in estimating 
T the signal   s(t)   is    €(t) = s(t) -  A   X    and the mean square error is 

:2(t)     =    [s(t) - ATx][s(t) - XriAj 

? T T       T 
s   (t)    -   2A    Xs(t)   +   A   XX    A 

T T When the   Widrow approximation   XX    ~ XX       is used in this expression,   the 

gradient of the mean square error is 

1/(0. 2XX    A -   ZV , 

where 

II-3 
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V =  Xs(t) 

x  (t+N) s(t) 

X      (t+N)   3(t) 
M      , 

X   (t)  s 
1     • 

(0 
• 
• 
• 

:..    (t)  : 5(0 
• 

— 

• 
• 

x.fl-N) 
i       • 

S(t) 

• 
• 
• 

x    (1-N) s(t) 
M 

The method of steepest descent specifies that the adaptive filter vector 

moves in the direction opposite to that of the gradient: 

A(t+ At)  -  A(t) -   2/x(t)  [V-XX
T

A] =    2/Lc(t) [v - y(t)X] 

In the case of the Wiener adaptive algorithm with unity-response con- 

straints in the look direction,   the constraints are expressed in the matrix 

equation 

0' °] 

 • v..r  H..r i 
 '••• o o     1 1     0-- i° i 

{)• 0 

D 

J 
where each of the row suhvectors   [l l]  or    [0'««'0]   in the constraint matrix 

has   M   components and where   D    is the (2N+1)  -dimensional vector 

II-4 
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i 

D 

d(-N) 0 
• • • • 

• • • • 

d(-l) 0 

d(0) _ I 

d(l) 
• 

0 
• • • • 

d(N) 

• • 
0 

corresponding to a white frequency response in the look direction.    Symbolically, 

the   constraint matrix equation may be written CA=D, where C is the 2N+ 1 by 

M(2Nf I) constraint matrix and   A    is the M^2N+ 1)-dimensional adaptive filter 

vector.     The adaptive filter must move in the direction opposite the gradient 

v|e2(t) -     AT (D - CA)   1=:2 XXTA - 2V +   C rA   , 

where    A    is the   Lagrangian multiplier vector 

'X(-N)" 

\ =     A(0) 

X(l) 

X(N)   J 

The update equation is 

A(t+ At)    =    A /'(t)     [2 2XXTA  - 2V +   C1 *]   • 

II-5 
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and the  Lagrangian multiplier vector is determined by premultiplying this 

equation by the constraint matrix C: 

& o  • (::A if  i „it) - r: A ... u(t) i>f.XXTA - 2CV + CC
T

AJ. 

Rearrangement of this equation yields 

;i(t) CCT\    =   ICA-DI   +   Zß{t)    [CV - CXX
T

A1 

or 

(^"'[c ^ -    Zlc.C '  )     ICV - CXX^Aj . 

so that the adaptive filter update equation is 

A(t+At) - A(t)   =   2/i(t)   [cT (CCTJ      C-lJ[xxrA-vJ 

T 
The matrix   CC       is the (2N+1) by (2N+1) diagonal matrix 

M 0 

0        M     n. 

•0      MO 

0      M 

and the matrix C (ccT) 
-1 

C   is the M(2N+1) by   M(2N+1) matrix 
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where each of the 2N+1  submatrices    JM is an   M   by   M   matrix with each 

element equal to one.    Premultiplication of any   M (2N+l)-dimensional column 

vector by the matrix   C   produces a column vector where all   M   elements in 

each of the 2N+1  subvectors are identical and equal to the average of the corres- 

ponding elements in the original column vector.     A^ a result,   the adaptive filter 

update equation reduces to 

A(t +At)    -    A{t)   -   2M{t)    [y(t)   (X - X)    -   (V - V)]   , 

where each element of the vector 

V = L v(t) J 
• 

rv(t;-N)-j 

Lv(t:-N)J 
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is equal to 

v(l-j)   - 

M 

ü E "i'-j' 
i= i 

s(t) 

If the adaptive filter vector   A    initially satisfies the constraint matrix 

equation   CA =   D,    the adaptive update equation produces adaptive filter vectors 

A    which also  satisfy the constraint equation.    Because of computer roundoff 

error,   however,   the filter vector   A    must periodically be adjusted to satisfy 

the constraints. 

L) 

c. ESTIMATION OF THE CROSSCORRELATION VECTOR 

Since seismic adaptive processing must be performed in the time do- 

main to obtain continuous time traces,   the technique described in this  sub- 

section computes the signal model crosscorrelation function components 
x(t-j) s(t) 0^ the vector V = Xs{t) directly in the time domain as a function 

of the time lag T between the signal as seen by the reference sensor and the 

signal as  seen by the    i-th    sensor. 

If the power spectrum of the signal were white,   the required cross- 

correlation function would simply be the probability density function P(T) 

for the signal's time lag    T   between the reference sensor and the i-th    sensor. 

For a given distance   d   between the two sensors,   the probability density func- 

tion for      T-   d cos  ^/V depends on the joint probability distribution for  6 and 

V ,   where  6 is the arrival angle of the signal and    V   is the apparent velocity 

of propagation (see Figure II-l). 

In order to reflect the signal power spectrum,   the crosscorrelation 

function components    x.(t-j)  s(t) are obtained by convolving the probability 

density function P(T) for the specified distributed signal model with the auto- 

correlation function corresponding to the estimated signal power spectrum. 
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Sf.nsor   i ^ a N, Reference Senso 

0 is,   for incoming energy,   the arrival angle (in the plane of the 
array) relative to the line joining the two sensors 

V is the apparent velocity of propagation with respect to the plane 
of the array 

d is the distance between the two sensors 

T is the time lag of incoming energy between the two sensors 

d c o s ^ 
r=  v— 

FIGURE II-1 

DIAGRAMMATIC REPRESENTATION OF THE FACTORS DETERMINING 
THE TIME LAG OF THE SIGNAL BETWEEN TWO SENSORS 
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By choosing the power spectrum of the data as the model for the signal spectrum, 

the adaptive b-amformer can be made to function solely as a directional-filtering 

processor. 

For array sensors with well-equalized signal outputs,   the average auto- 

correlation function across channels can serve as a model for the signal auto- 

correlation function: 

M M 

s(t-k) s(t) ^ i    V*    x     (t-k) x   Ttl^-J-    V*    X    (t-k) X     (t) v       ' M   £-J      m m M   ^ rf      m m 
m=l m=l 

If the sensor responses differ by a simpli scale factor,   then an amplitude 

correction can be made1 

M 
^..(O) 

s.(t-k)  s.(t)J-  V     X    (t-k) x    (t) / J^ 
l !        M   Z-T       m m /-- V    V?        (0) 

m= 1 IM ^j       mm 
V m=l 

where    V   (0) and   (P       (0) denote the average power for the channels denoted 
ii mm 

by the subscripts    i   and   m,    respectively.    (Since the crosscorrelation function 

x.(t-j) s(t) is being estimated and the strength of the   i-th sensor affects only 

the t^rni   x.(t-j),   only an amplitude correction is made instead of a power 

correction. )    For good results in eliminating the variations in sensor response, 

the power ratios  (P.,10)/ (0       (0) neod to be reasonably stable. r ii mm 

In the later section', of this report,   formulas for the probability density 

function   P(T) wili provide expressions for   P(T)   ar; a continuous function of 

the time lag T .    The n  nzerc values of   P(T) lie within the interval 

max    ^ T ^      max 
V 

rmn mm 
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T 
I 

I 
I 
I 
I 
I 

where   d is the maximum distance to the reference sensor and   V^ 
max 

is the minimum apparent propagation velocity across the plane of the array. 

so that the frequency bandwidth for   p(r) is infinite.    On the other hand,   the 

autocorrelation function to be convolved with   p(r) in estimating   x.(t-j) s(t) 

is available only at integer multiples of the sampling interval   At.    In well- 

designed processing systems,   spectra of signals and noise lie predominantly 

within the frequency band 

where    W = 1/At   is the bandwidth corresponding to the sampling interval 

At.   and it is not a bad approximation to assume that the spectrum of the data 

lies entirely within the Land indicated.    If the unmodified probability density 

function   p(n were sampled and then convolved with the available values of 

the estimated signal autocorrelation function,   then the frequency components 

of   p{T) outside the sampling bandwidth would,   in effect,   alias back into that 

bandwidth.     A remedy for this problem is to compute H continuous convolution 

of   p (T) with 

/ 

sine  Wr = 

sin TT Wr 
77WT 

if   7= 0 

It   7-:)fc    0 

at integer multiplies of the sampling interval   At   by numerical integration.     The 

number of computed values should be sufficient to extend at least beyond all lags 

T   for which p(T) is nonzero.    Convolution with sine   Wr    removes from p (r) 

all spectral components outside the sampling bandwidth.     If an infinite-length 

version of this bandiimited and sampled version of p(T) were convolved with 

an infinite-length sampled autocorrelation function estimate,   the result would 
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be the true sampled convolution of the probability density function   P(T) with 

the bandlimited autocorrelation function estimate.    In practice,   of course, 

both of these functions must be truncated to a finite length.    If the point length 

is 2L+1 for the modified version of   p{T) and   2(N+L) +1 for the autocorrelation 

function estimate,   then the Fourier transform of the (2N+l)-point-long convolu- 

tion output is the desired signal-model crosspower spectrum convolved with 

[sin 7T(2L+1) f Atl   /  f sin rrf A tl ,  which is the Fourier transform of the 

(2L+l)-point-long sampling function for the  modified probability density function 

P(T).    If the number of points 2L+ 1 is sufficiently large and the estimated signal- 

model power spectrum is sufficiently smooth,   the signal-model ci osscorrelation 

function estimates for   x.(t-j) s(t) will be relatively free of spectral window 
i 

effects. 

In the following sections,  analytic derivations are given for the probabil- 

ity function p(r) corresponding to specific distributed signal models.     These 

derivations generally are obtained using a transformation from the specified 

velocity-azimuth probability distribution to a new two-dimensional  space where 

the time lag   r   is one of the coordinat- s. 
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SECTION III 

INVERSE VELOCITY SPACE MODELS 

i - 

L 

A, BASIC APPROACH 

In this section,   the signal-model probability distributions are 

specified as a function of the two-dimensional inverse velocity vector 

V 
u   = 

V -  V 

where   1   is the incoming energy's apparent velocity in the plane of the array. 

The coordinate system axes are oriented so that the   Ux   coordinate points in the 

same direction as the line from the   i-th   sensor to the reference sensor 

(as shown in Figure III-l).     The time lag T  corresponding to a particular value 

of   u   is 

T =    d   u    , 
x 

where   d   is the distance between the two sensors,   and 

du 
x 

"dT 
_l_ 
d 

The probability density function p(To) is determined by taking the limit as 

AT approaches zero for the quantity (1/ At) times the probability between   ro 

and   T   + At: 
o 
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5 -w 
i 

^ 

(u  )     (u )    + Au 
.x o /  x o x 

"T 

r^J 
^ 

LI 

. 

X. 
1 

is the vector location of the  i-th  sensor 

is the vector location of the reference sensor 

is the distance between the two sensors 

V 

V- V 

TT is the inverse velocity vector corresponding to 
the apparent velocity across the array 

V is the incoming energy's apparent velocity in 
the plane of the array 

FIGURE m-l 

THE BASIC INVERSE VELOCITY SPACE MODEL 
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I 
I 
I 
r 

i 
i 

Urn | Pi!gJLiV^I)     PK)o1Ux^(üx)o+Aux] 
P(T0) = AT-OJ Ar 

_ AT 

1    PHU )  ,  u Idu     Au 
iim     IJLoe     L    x'o'     yj      y_  

AT-+0 AT 

00 

dj    P[y   x'o'     yj      ) 
-co 

B. DISK MODEL 

For this model,   the probability density is uniform on the disk fu| < u max, 

where u = 1/V    . 
max mm 

array: 

nd V is the minimum apparent velocity across the 
min 

|ü1<u 
max 

ir u 

P(ux.  uy) 

max 

0 if luUu 
max. 

The probability density function p{r) for the time lag    r   is 

■>rr 
I  2 2 

Z./u -     u 
\    max x 

p(T)    =    r 

TTu d 
max 

im 
T7u d 

max V1     VUmax/ 

2V /      /V    .   T\< 
mm      /,      I     min    \ 

=   Td V     ' \        d~/ 
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for   irl <  d/V and zero elsewhere.     Figure III-Z displays    0(7)   for this modeL 1 1 mm r     /      r\    t t 

whose principal application arises in connection with infinite-velocity   P   waves. 

C. ANNULAR    MODEL 

In this model,   the probabilit/ density is uniform on the annulus 

u <|uf<  u ,   where u =1/V     .,u     .     =1/V ,   and V     .    and V 
mm max max mm       mm max mm max 

are the minimum and maximum apparent velocities,   respectively,   across the 

array: 

1 

\max        m 

if   u     .      <lu|<   u 
c.    \ mm      ' ' max 

4 
p(u   ,u   ) 

x     y 

if   |u| < u     .    or     u* > u 
mm 1   ' 

The probability density function   p(-) for the time lag    T  is 

fz 2       /T ; 
(U - u - / u     .     -  u 

s  max        x       v    mm        3 

max 

'2 Z    \ 
77" , u -U      . 

max     mi nj'i 

if u   < u 
x ~    mm 

PIT) = 

1T(a -u       \d 
max     mi 

; 
2     2 
max       x       ifu     .    <u<u 

mm —   x-   max 

\ mm 
V 

V 
m i^J 

fv    .  A'' , /v r\ 
1     I    rri^n ) 1 [     max ) 

A    d   /   "  V       ^^V      d~7 
max^ 

ifH< 
V 
max 

max' 

rr ■ 7-) \      >  mm max/ 

min  \ /   —i 
if 

V 
< r < 

max V 
mm 

0 

D 

B 
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I 
I 
I 
I 
I 
I 
I 
I 

P(T) 

zv 
mm 

TTd 

\ 
\ 

\ 

\ 

-4->. 
v 

mm min 

FIGURE III-2 

TIME-LAG PROBABILITY DENSITY FUNCTTON 
FOR  THE INVERSE VELOGITY  SPAGE DISK MODEL 
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and zero for     Ir >d/V     .   .     Figure III-3 presents   p(r) for the annular model 1 ' min 0 

at nine values of   V     .   /V 
mm      max 

D. SECTOR-OF-ANNULUS MODEL 

In this model,   the probability density is uniform on the sector of the 

annulus   u    .     <   u|   < u between      B   .      and      a ,  which are the mini- 
rmn max mm max 

mum and maximum arrival angles relative to the line joining the   i-th sensor 

and the reference sensor.     That is to say, 

(0      - e . )(u2      - u2 . ) 
max min      max        mm 

if u <  Iu|  <   u 
mm       ' max 

and ß    .     < 6 <   6 mm max 
p(u   , u   ) =< 

X y 

otherwise. 

Breaking up the angular range    9    .    < 0   <    0 into sections bounded by the 
mm max 

transition angles -TT,0,TT encountered as   0   sweeps from    0     .    to     0 con- 
min max 

siderably simplifies the determination of   p(r).    If  0     .     and    0 are speci- r mm max r 

fied so that   -Z TT £_B   .    <27r,   -Ztr <  Q <^Z TT ,   and     0.      <0 <    0    ,    + ZTT, 
rmn max mm max  -^   "mm 

then there are no more than three sections,  each lying either in the first and 

second quadrants or in the third and fourth quadrants.    Sections can be mapped 

into the first and second quadrants in such a way that the probability density as 

a function of  T   is unaffected.     Figure III-4 depicts a procedure   for determining 

the minimum angle a and the maximum angle/^ of each section after the appro- 

priate mapping onto the first and second quadrants.    Once the subdivision of the 

angular range    0 < ft <■ fi and the mapping onto the first and second quad- 

rants have been completed,   the probability density function P(T) is determined by 

adding the contributions from the appropriate sections at the time lag T.    If the 

minimum angle Of and the maximum angle Rafter mapping onto the first and 
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p{T)r 

■ 

/v   . /v 
min      m 

-   0. 5 
IX 1. 

p(r) 

\ 

V        /V =  0.6 
min      max 

P(T) 

V /V 
niin      TTI^ 

0.7 

2V 
mm 

77 d 

= 0.9 
ax 

min 

FIGURE III-3 

TIME-LAG PROBABILITY DENSITY FUNCTION 
FOR THE INVERSE VELOCITY SPACE ANNULAR MODEL 

AT NINE VALUES OF V^/V^^ 
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r   START      \ 

N = 
NH 1 

even 

«  = 
N 

0 -  TEST + TT 
nun 

0 -TEST +  TT 
max 

yes 

N =   0 
M =   1 

1 
TEST- 
(M-Z)TT 

i Oi     = TEST - e 
N max 

/8        rr TEST    -   ß      . 
N nun 

. , 

. 

D 

FIGURE III-4 

PROCEDURE FOR MAPPING ANGLES BETWEEN 
6 AND   0 mm max 

ONTO FIRST AND SECOND QUADRANTS 
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i. 

r 

l 

[ 

second quadrants both lie in the same quadrant and the atmulus between   u 
nun 

and u is thick enough,   there will be a rantje of   u      for which the extremal 
max x 

values of   u      are located on the section boundaries    u = (u cos  ß ,   u   sin/3) and 

u = (u cos of ,   u sin or ).    On the other hand,   if a lies in the first quadrant and ß 

in the second quadrant or if the annulus is thin enough,   there will be a range of 

u    for which the extremal   values of   u    lie on the circles  lu\= u and (vi(= u 
x y max min 

Figure 1II-5 illustrates these two possibilities when  a   and   ß  both lie in the first 

quadrant.     The case shown in Figure III-5(a) corresponds to the condition u cos/? 
max        r 

;u    .    cos a,   while the case shown in Figure III-5(b) corresponds to the condition 
min r 

u     .     cos A' <    u cos ß . 
min max 

On the line    ^ = (u cos y ,   u sin y ),   u    =   r/ d   and   u    =    r tan Y / d,   so 
x y 

that   u    =rtan ct/d or u    =    r tan ß/d whenever a section boundarv corresponds 
y Y y i 

to the extremal value for   u    at the time lag T .    For any given pair of angles 

« and/? ,   there are three possible   u    intervals where the formula for   p{r) is 

different.     In the first and last of these intervals,   one extremal value of   u    is 
y 

on a section boundary,   while the other is on a circular arc.     In the middle inter- 

val,   both extremal values lie either on circular arcs or on section boundaries. 

.Let 

2 
K = 

d(0        -0    .   )(u2        -a2 . ) x   max      minM  max        mm 

d(0 
m 

- 0   .   ) I   Z ' 2 | 
ax      min'  Vv     . V / 

\    mm max/ 

If   TT /2 < ß ,   then the first interval is u cos« <  u    < min(u cosß , 
max        '   ~     x - min 

u cos or)    and 
max 
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max 

— n; 

D 
U 

., 

u 

(a)   No Time-Lag Overlap Between Section Boundaries 

max 

^' a 

(b)   Time-Lag Overlap Between Section Boundaries 

FIGURE III-5 

THE TWO FIRST-QUADRANT POSSIBILITIES AFFECTING THE FORMULAS 

FOR THE TIME-LAG PROBABILITY DENSITY FUNCTION 
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P(T) K/   max 
rtan^l 

d     J 

|_ min    V 

.. 

L 

li 

ior (d cos ß/V    .)<   T < min   [(d cos/?/V ),   (dcosa/V        )].   li ß <  n / 2 
min — max 

then the first interval is u cos y3 <Lu   < min (u cos/3 ,  u cosa)and 
mm max 

mm- 

mm 

P(T) =  K 

=   K 

-tan/3 
/ 

2 2 
u    .      - u 

mm x 

Ttan/3 
d V 

max 
JJ^fj 

ior Id cos ß/V        )   < r < min    [{d cos ß/V    .   ),   (dcosa/V        )].    If 
max    """"""" min max 

/3  =  77/2,   the first interval is of zero length,  and the   formula for the second 

interval should be used at    r  =  0.    If max (u cos ß ,   u cos/3)<_u   ^ 
max min x 

min (u cos a,  u cos a),   then the extremal values of u    in the second 
max min y 

interval are on circular arcs and 

P(r) KJ   /u - u -    /u "    u 

[>;    max        x v    mm x   | 

L   minV m 

r(VT)2] 
for maxl(d cos ß/V        ),   (d cos ß/V )] i. r <  min [ (d   cos« /V        ), lx '        mm max i mm 
(d cos tv/V        )1.    If min (u cos« ,  u cos « ) <_u   < max (u cos ß, 

max J max mm x-~ max 
u cos 3),   then the extremal values of u    in the second interval are on section 

min r y 
boundaries and 

p(T) =     Kj7"'       |tan ß  - tan «I 

III-11 

lt"J-- -■ -- - -   -•    -■-'-'—-—tiiiiiiiiii-in  ii  -■—-- ll-inr" ■■  ■    ■ 



r^wwwwiwiowwg^piisBrBWIiPHpipi^^ «JMui»,w,jpwwiijii«,JPm| 

formin   |(dcosa/V    .  ),  (dcosrv/V        )] < T < max I (d cos/3/V    .  ), 1 v mm max * —    — mm 

d cosß/V )].    If the limits for the second interval are equal,   then only 
max 

the formulas for the first and third intervals should be used.    If TT/ZOV , 

then the third interval is max (u    .     cosß ,   u cos a) ^ u   ^_u    .     cos «   and 
mm ^        max x       mm 

P(T)    =   K 

K 

mi 

7 tan« 
d 

T tan« 

Vu    .     -u      j v    mm x    j 

V max 

/V        r\Z 
f     max   ] 
\        d/ 

for   max I (d cos |Ö/V ),  (dcosa/V    .   ) I ^T < (d cos a / V        ).    li a <IT/2, 
max mm max 

then the third interval is max (u cosß ,   u    .     cos «) <u    <   u cos  a and 
max min x max 

P( r)        KJ^yu 2 2 
- u 

max        x 
Ttana 

^"1 
min 

r tanfv 

for max 1 (d cos«/V    .   ),   (d cos a/V        )1 < r < (d cos «   /V    .).    If   «=    ir/2, 
mm max ' *     — mm 

then the third interval is of zero length,   and the formula for the Lecond interval 

should be used at   T=   0. 

Figures III-6 and III-7 portray the time-lag probability density function 

P(T) at  V    .   / V mm       max 
,„o 

ous    30     sectors. 

0.1    and   V    .   /v =   0.9,   respectively,  for vari- 
mm     max 
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2 V 

Ü 

mm 

0   .    -  - io mm 
e      = 2ou 

max 

mm 

mm 

fl =   92C 
max 

P(T) 

min 

u 

:■ l 

Ü 

D 
D 

P(T) 

/ 
\ 
\ 

P(T)* 

\ 

0    .     =   27H 
mm 

0 308 
max 

2V 
p{T) 

min 

ffd 

0    .     =134 
■ mn 

e        =   164( 
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Is SECTION IV 

DISTRIBUTED RING MODEL 

D 
0 

D 

In this form of distributed signal model,  all incoming energy is con- 

centrated at a single apparent velocity   V   with respect to the plane of the 

array.    The incoming energy,  however,   is distributed over a range of arrival 

angles with respect to the line joining the   i-th sensor to the reference sensor. 

If the probability density function   p^(ö) is known between    the arrival angles 

- TT and TT,   the probability density function P(T) for the time lag T  can be easily 

determined.    First,  a transformation from velocity-azimuth space to delay- 

azimuth space is made with the formula 

d cos 6     , 

w here   d   is the distance between the two sensors.     The line    V-constant is 

transformed into a cosine curve (as shown in Figure IV-1).    For a given time 

lag T,   the corresponding angles are   0 =   cos '    (V T /d) and ^ =   - cos       (Vt/d). 

When any time lag   T     is less than    -d/V,   the probability P{r ^TJ that 

T is not greater than     T     is the constant value zero.    Correspondingly,  when 0 o 
any time lag    T    is greater than   d/V,   the probability P(T ü TJ is one.    Thus 

the probability density function   P(T) is zero for |r|>d/V.     Between 

r=   - d/V and T=  d/V, 

P(T^To) --   1 % 
cos      ^__j    .jr     .c„s        ^—y 
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FIGURE IV-1 

TRANSFORMATION FROM  VE LOCITY-AZIMUTH SPACE 
TO DELAY-AZIMUTH SPACE  FOR  DISTRIBUTED RING MODEL 
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where    F0(0) is the cumulative distribution function for the arrival angle   0 

Thus,   for !Tl < d/V,  the time-lag probability density function is 

. . 

P(TO) 

dP( r< r ) 
o 

o 

dr 
F^ 

-1   |VTo 
cos +    Fz, 

-p.. 
-i 

CO s 

+  Pc 

©■ 

-' (VT") 

/l-(VTo/d)' 

1       

k/l-   (VT   /d)2 

(^ 

(^ r   • 

so that 

p(T)   = 

•cos 

(If 
'■ir'J +   pelcos"   WH- for|r|< - 

for ir| 

If the arrival angle probability density function   p(){0) is nonzero when 0   is an 

integer multiple of IT,   there will be a discontinuity in   P(T) at Mr   d/V:  as|T| 

approaches d/V from smaller absolute values,    P(T) goes to infinity; for all 

values of |r| greater than   d/V,   on the other hand,   U(T)  is  zero. 

IV-3 
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Figure IV-2 depicts,   for selected 30    sectors,   the probability density 

function   P(T) corresponding to the uniform angular probability density func- 

tion 

1 

max   in in 

P (9) 

a o ■  < o < e    „ mm max 

otherwise. 

In the rase where    0 =    -10° and    0 =   20   ,   the probability density 
mm max 

approaches   oo   as T   approaches d/V from the left. 

Figure IV-^ pictures P(T) when the incoming energy is equally likely 

at all   possible arrival  azimuths.     The time-lag probability function approaches 

oo   as  T   approaches i d/V  moving outward from    r=   0.     This figure illustrates 

the limiting case for the inverse velocity space model when    V /V 

approaches one (compare with Figures III-2 and III-3). 

Figure IV-4 represents the probability density function   p(T) for the 

time lag  T  when the arrival-angle probability density is normally distributed 

about some angle   0 : 

(Ö-Ö0) 

1 
2a 

For this figure,   the standard deviation    (7 is  15   .    Strictly speaking,   there is 

an infinite discontinuity at   T =  -j-   d/V in all cases,   but the probability associated 

with these discontinuities is  sometimes minuscule and the discontinuity for such 

cases is not shown in the figure. 

I 

.. 

-. 
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P(r) 
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T 
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FIGURE IV-2 

TIME-LAG PROBABILITY DENSITY FUNCTION FOR  THE DISTRIBUTED RING 
MODEL WITH A UNIFORM DISTRIBUTION OVER VARIOUS  30° SECTORS 
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FIGURE IV-3 

TIME-LAG PROBABILITY DENSITY  FUNCTION FOR  THE DISTRIBUTED RING 
MODEL WITH INCOMING ENERGY EQUALLY LIKELY AT ALL AZIMUTHS 
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SECTION V 

VELOCITY-AZIMUTH SPACE MODELS 

A. B/SIC APPROACH 

In this section,   the signal-model probability distributions are specified 

as a function of the apparent velocity    V   in the plane of the array and the 

arrival angle  0  with respect to the line joining the    L-th    sensor to the refer- 

ence sensor.     The cumulative distribution functe n    F( r   ) for the time lag 
o 

r   ,   i.e. ,   the probability    P(r< T   ) that    T   is less than or equal  to  some arbi 

*y lime lag 
o o 

trary time lag    T   .   is obtained by integrating over all points (V, 6 ) corres- 
o 

ponding to time lags less than or equal to   T : 

F(ro) P(r<;ro) = 11 p(V, 0) de dV, 

T^n 

where p(V,0) is the probdbility density at the point (V,^)-     The transformation 

of variables 

j 

T 

I 

T = 
d cos 0 0=0 

facilitates the evaluation of the double integral above.    If the probability density 

is nonzero only inside the rectangle specified by   V < V< V and ' o i /        min max 

-/7j<_0 < 7r,Figurc V-l illustrates the corresponding area in ( r, 0) space.     The 

shaded area corresponds to the specified rectangle in (V,0)  space.    After 

transformation,   the cumulative distribution function F( r  ) is 

F( •■ ■ f'f P (V.0)    J (r,0) d 0 d r , 

V-l 
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TRANSFORMATION FROM (V, 0) SPACE TO (T.fl) SPACE 
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I 

where   J(r,#) is the Jacobian 

J(T,ö) = 

a T 

ae 
d T 

-d cos0 

9V 

ae 

ae 
ae 

■d sinö 

-d cose 

The probability density function   Tor the time lag  r  is 

P{T)   = 
dF(_r) 

d r 
1       _d_ 

Irl        T 

(V,e)  cos   fl d ^9 

For bivariate polynomial probability densities 

M N 
p(v'0) = Z) ZI a..    V fl- 

i=0       1=0 

M N 

E  E",^)'" 
i=0       )=0 

the integrand is of the form 

V-3 
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M N 
i+ l^J 52 52 b-- (cose) 1+ d 

i=0     j=0 

and can be evaluated analytically. 

B. UNIFORM RECTANGULAR DISTRIBUTION 

In this model,   the probability density is uniform over a rectangle 

in velocity-azimuth epace: 

P(V.^) = 
i 
I 

max      min       max      min) 

0 

if V   .  <v<v mm max 
and   0        <ß<ß ininVf7V"nax 

otherwise. 

The time-l?g probability density function is 

P(T)   - 
|Ttr(Vmax- Vmin)(   Ömax-   ^mir) I cos ddd 

dir) 

d sin 6 
IrlWV   "    - V    .   )(   ö        -   6   -  ) 1 '   v   max        min      "nax       inin 

0(T) 

If the shaded areas above   «      ^ and below     0 in Figure V-l are removed, 
ITlclX III AH 

then the remaning shaded area determines the limits of integration for   6   at 

any particular time lag   T .    Since the angles   0 along the curved boundaries 

in Figure V-l are of the form   cos'1  (Vr/d) and -cos"    (Vr/d),   the following 

identities are useful in the integral evaluation: 

D 

V-4 
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I 

sin 

sin 

cos 

1 

As in the case of the Section III sector-of-annulus model,   subdividing the 

angular range   0        < ö< Ö      v 
inl0 sections bounded by the multiple-of-TT 

0 mm max 
transition angles encountered as 0   progresses from   ß^ to   0max   tacilitates 

the determination of p(r).    As before,   sections can be mapped into the first 

and second quadrants so that the probability density as a function o'   r is un- 

affected.     The same procedure outlined in Figure III-4 is also sufficient to 

ascertain the minimum angle a and the maximum angle  /3 of each section 

after mapping onto the first and second quadrants.    Addition of the contributions 

from the appropriate sections at the time lag r  again determines the probabil- 

ity density function p( r).    If   0minand   0max are specified so that   - 2 TT * 0^ 2 TT. 

-ZTTSO < ZTT,   and   0 <d <   Ö    •     +   277,   then there are no more than 
<äma*. mm        max"    mm 

three such sections. 

The extremal values of   0 for any particular time lag T  lie cither on 

horizontal section boundaries or on arc-cosine curves.     The boundaries in 

the rectangular velocity-azimuth model correspond precisely to the boundaries 

of the inverse-velocity sector-of-annulus   model in Section III.     The difference 

between the two models is the probability density within the boundaries: if the 

uniform rectangular velocity-azimuth model were expressed in terms of the 

inverse velocity model,   the probability density would rise as the vector magni- 

tude    |u|    decreases.    As in the case of the sector-of-annulus model,   there are, 

for any give pair of angles a and  ß .   three possible r  intervals where the formula 

for   p(r) is different.    In the first and last of these intervals,   one extremal value 

of  0 is on a horizontal section boundary,   while the other is on an arc-cosine 

curve.    In the middle interval,   both extremal values lie either on arc-cosine 

curves or on horizontal section boundaries. 
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li-nlZKß,   then the first interval is (d COS/i /V     ,   )   <T< 
mm 

min I (d cos  ß/V ), (d cos tv/V     .   )1  and L max mm J 

P(T) 

i R -1(     minT ^ 
< sinP    -  sm     cos       \ j 1 

T T(V       - v   . )(e     - 0    ) ' max rmn       max      mm 

/d2 - (V        r)2          -d sin/3 
v niin  

T    (V - V    .   )( fl -   0    .   ) max rmn       max mm 

/ 
If /3 < TT/Z,   then the first interval is (d cos Z3 / Vmax) < T_< min [ (d cosßlM^^), 

!          -If    max7^ 
smp   -  sin   I cos      I    I 

(d cosor/v )]  and 
max   J 

P(T)    = 

TV . V    ,  )(   0 - 0   .  ) 
max min max        mm 

sin/3    -  yd2 - (V r)  ' 
max 

r2 (V -V    .  )(   Ö " Ö   .  ) max        mm        max       mm 

If   ß-   T-jZ,   the first interval is of zero length,   and the formula for the second 

interval should be used at    T=   0. 
i 

If max I (d cos/8/V        ),(d cos/3 /V ) ] < r < min [ (d cos «/V    .), 1 v ^      mm max'•' —     — mm 
(d cosa/V )],   then the extremal values of  B in the second interval are on 

max J 

arc-cosine curves and 

. 

D 
0 
D 

0 

V-6 

■-   ■ ■  ■  -    - -..-^..^^-^-im.^^^-^^......   



I 
I 
I 
I 
I 
I 
I 

a    sin 

P(T) 

COS 

/v A     r . /v  r\i I     min   I -^     I    max   I 
V"—r"/ ■ sin cos    V^r^ 

r   (V - V   , )( 0       -   e      ) 
max mm       max       mm 

/d2 -   ,'V     .   r)       -   / 
V mm v 

2      , ^2 
(1    -   V r) 

max 

r2(V - V     ,   )( 0 - 0    .   ) 
max min      max       mm 

V    .     +   V 
mm max. 

( 0 max        mm y^ si     h ,/n" - (V„._T)
2
 + yd2 - (v T)

? 

mm m a X 

If min I (d cos rt/V    .  ),(dcosa/V )l<T<max I (d cosß/V        ),(dcosy3/V )], LV mm max J-   - ,v ^      mm max 

then the extremal values of 0  are on horizontal section boundaries and 

3 

P(T) 
sin ß -    sin a  I 

2 (V - V     .   )( 0 - 0    .   ) 
T max mm       max        mm 

If the limits for the second interval are equal,   then only the formulas for the 

first and third intervals should be used. 

If    n/2<n ,   then the third interval is     max[(d cosß/V ), 
max 

( d cos a/V    .   )] < r < (d cos «/V ) and 
min J -     "* max 

P(T) 

d ( sin 
-1/V 

cos H ma x ■sm a 

•|T(V - V    .  )(0 -   0   .J max mm       max mm 

d sin o /d2   -    (V r) 
V \   max   / 

rZ (V - V    ,  )( 0 -   0    .   ) 
max mm       max mm 
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. 

If «< 7r/2,   then the third interval is 

max l{d cos/3/V        ),(dcoSc*/V        )] < T < (d cos «/V        ) and 1 ' mm max — miii mm 

sin 

P(r) - — 

cos 
/V        T \" 
I    mm     1 
\     d    / 

sin a 

r" (V -    V    .   ){0 - 6    ■   ) v    max mm       max       mm 

7  2 2 
d    - (V„;„T) d   sin ot 

mm 

T (v       - v   . )( ö     - e  ■ ) max mm       max       mm 

If «=  7r /2,   the third interval is of zero length,  and the formula for the second 

interval should be used at r =  0. 

Figures V-2 and V-3 present,   for the uniform rectangular velocity- 

dmuth distribution,   the time-lag probability density function p(r) at az 
o 

V        /V =0.1 and V        /V =   0.9,   respectively,   for various 30     sectors, 
min      max min      max 

At V        /V =   0. I,   there are sharp peaks near    r =  0 in Figure V-2 (in 
min      max 

sharp contrast to the corresponding inverse velocity model of Figure ITI-6). 

At V        /V =   0.9,  however,   there is a strong resemblance in Figure V-3 
min      max 

to the comparable inverse velocity model time-lag probability density  functions 

in Figure III-7. 
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mm 
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mm 
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mm 
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mm 
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P(T) 
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7Td 

l! 

\ 

-d T = 
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mm 

FIGURE V-2 
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TIME-LAG PROBABILITY DENSITY FUNCTION FOR THE UNIFORM 
RECTANGULAR VELOCITY-A ZIMUTH MODEL AT V    in/V 

FOR VARIOUS 30    SFCTOPS 
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2V 

P(r) 
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TTd     \ 
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min 
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0        =   92 max 

V 
min 

P(T)   A 

mm 

0 

134 

164C 

max 

■+-> 

P(T)  A 

6 -   278 
min 

0        =   308° 
max 

2V 

-(-> P(T) 
mm 

TTd 

V 

0       --   206 
min 

d =   236' 
max 

+-> 
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T = 

mm min 

FIGURE V-3 

TIME-LAG PROBABILITY DENSITY  FUNCTION FOR THE UNIFORM 
RECTANGULAR VELOCITY-A ZIMUTH MODEL AT 
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0.9 FOR VARIOUS 30    SECTORS 
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C. TAPERED-VELOCITY UNIFORM-A ZIMU TH DISTRIBUTION 

. 

In this model,   the probability density is nonzero within a rectangle 

in velocity-azimuth space and is the product of the velocity probability density- 

function p(V) and the arrival angle probability density function p(f}): 

P(V, 6)  =   p{V) P(0)     . 

The velocity probability density function    p(V")  is  smooth and falls off to  zero 

at the minimum and maximum velocities.     It is  specified over three equally 

long intervals by quadratic functions.     In the first interval,   where 

V     .    ^V< (2V +   V )/3, 
mm mm max 

>(V) 

27(V-V    .   ) 
mm 

2(V -V    .   ) 
max     mm 

In the second interval,   in which (2Vmin +   ^J/3 < V< (V^ 4   ^V^J/i, 

P(V) 

Z7(V-V ) 
med 

4(Vmax_Vmin) (V -V    .   ) 
max      mm 

where V =   (V +   V )/2 is the mean velocity, 
med min max 

where (V +   2V )/3^V< V 
mm max max 

In the third interval, 

P(V) 

Z7(V         -V) 
 max  

2(V -V    .   ) 
max      mm 

V-U 
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Figure V-4 shows the velocity probability density function p(V).    If V    and 
n 

V    designate the minimum and maximum velocity,   respectively,  for the i-th 
b 

interval,   then 

and 

V 
(3-i) V    .    + i V 

mm max 

Vb = 

(4-i) V +  (i-1) V 
mm max 

The arrival-angle probability density function   p( Ö) is uniform between 

6   .    and   0        : 
mm max 

1 

ft p{ 0) = \      max       min 
if e      <e<e f) mm max 

0 otherwise. 

As in earlier models,  breaking up the angular range   ß   .   < d<0 
mm max 

into sections in accordance with the procedure depicted in Figure III-4 and 

subsequently adding the contributions from the appropriate sections can 

simplify determination of the time-lag probability density function P(T). 

As before, cv and ß denote the minimum angle and the maximum angle,   re- 

spectively,   of each section after mapping onto the first and second quadrant. 

At the time lag T ,   the contribution to p(7) from each section is 

.. 

(u max 

1    ^ 
|T|     r 

p(V,Ö) cos  öd 6     , 

min 

where   w and  co are the minimum and maximum angles,   respectively, 
min max 

at the time lae T after the rectangle described hy n£.ß£.ß and V    .   <LV<LV B & / r min max 

is transformed into ( Tt 0) space.     The term |r| in the denominator may be 

replaced by T  if the integration limits are reversed when   T   is negative. 
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FIGURE V-4 

TAPERED VELOCITY PROBABILITY DENSITY FUNCTION 

! V-13 

MM ■ntfaatMHM -   -"■ imim)MiläimiUtlMmMtMtmit^mikr]i   



.um ii»...uumM[,wmmw.,m,\ ii,u,iui,! ,.pjwpiiniHi^|pA,in><>...lNMl ipw! UliJ«,* IJJ .„I.. ,i i4I|llui|pjJl|l«iHiilliJ.._ilu«j,ijiJl,j|lllll, 11,1 .in IJIIIII«J pi.i!. 11   '-• mmmmm'ommm 

The contributions from each velocity interval at the time Tag    r   must be 

determined separately and summed to obtain the contribution from each 

sector.    In this process,   integrals of the form 

((V -v/ cos  OdO --       I C^^L   -    Vo)2 eos 0do 

1 2   , 
—     sin ü (cos    V   1     Z) 

3 

- 2V   d 
o 

-     sin 0cos 6   +  i-0 
2 2 

f   V     sin 0 
o 

sin 0 

V     T   ^ 

(-V) 

1       7      v r 
f 2 ,    o   , ,, 
-   cos   0   - (—jr)    COS

 
ö 

V     T 

occur for each velocity interval. 

The contribution to    p( r ) i s 

27 d^ 
3 ,4 

2(V -V (  0 "   0    .   ) T 
max      mm max        mm 

■m^ 
1 2 
-   cos   0 

V      .    T 
.     mm   . 

.( ;—)   cos 

in the first velocity interval, 

V     .   T   2 
2 

+    3 

V        r 
(    min    )0) 

. 

" 
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I 
I 
r 

i 
11 

9(1 sinö 

4(V ■ V    .  ){ 6       - Ö   . ) T' 
max      mm       max      mm 

27 d 

(V -V    .   )   (  Ö - II    .   ) r 
max      mm max      mm 

V r .V        . T 
mod v   ros   ß    4 

sin 0 

\   cos (^e1_) 

1   cos  Z^ 

V 
( med   )« 

■' 

in the second velocity interval,   and 

3 
27 d 

2(V -V        )   ( Ö        - ^    .   )  7 

max      mm max      mm 

sinö 

V r /V r  \ max       v  .     . fl   ,     /   max      N ,    max       , /.   . 
.( —) cos W  ^ 

V        d 

1 2,, 
—     cos    '' 

V T 

max 
W 

in the third velocity  interval,   where    ^ and     Öb are vet to be specified. 

In the discussion which follows,   Va is the minimum velocity of the 

i-th velocity interval and V     th e maximum velocity.    If    n/Z< a <ß, there is 

, .,Mil,.M,.M!i!; u. .(;)   vhen(dcos/i/V)<r<(dcosa/V ).    In this case,   the 

upper integration limit is 

i     V    r 

b \    d    / 

when (d cos ß/V   )<r<(d cos tv/V J or   " o   when (d cos n / V^. r v (d cos «/V^, 

The lower integration limit is   ^ = ^   when (d cos ß/\';)<r<(<\ cosß/Vj or 
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V    T 

-1 /  b \ 

when (d cos ß/V^ <T<(d coso/V^. 

Ua<(Kn/2,   there is a contribution to p(T) when (d cos/3/Vb)<T< 

(d cosa/V  ).    In this case,   the upper integration limit is   «^ ß   when 
a 

(d cos (8/VJ<T<(d cos /^/V  ) or 

1   v r 

9    =   cos'1  (-4-) 

when (d cos ß/W  )< r< (d cosa/VJ.     The lower Integration limit is 

V       T 

0a   =    COS ( d"^ 

when (d cos /3/V  )<r<(d cosa/VJ or   0    = a when (d cosa/Vb)< T < (d cos a/VJ. 
b' 4 b "a 

If   a£TTf2<(i,   there is a contribution to p(r) 

when (d cos/3/V  )<r<(d cos a/V  )    and the upper integration limit is always 

1     Va T 

"b=   COS"      (^_) 

1 

. 

. 

d 

The lower integration limit is   0    =/? when (d cos ^/V  ) < ^ < (d cos ^/VJ or 

V     T 
-1   /_b     \ (9a=   cos        (-T-) 

wh en (d cos /i/V  )<r<(d cosa/VJ or   ^ = « when (d cos «/Vj < T< (d cosa/VJ. 
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If  a <n/2 <^ß Rnd T=   0,   there is no simple method to eliminate the 

powers of   T in the denominator of the integrals to be evaluated.    However, 

the probability   P( 0 < T  ^.T) that   r    lies between   0    and   T is 
o o 

I 
max 

mm 

P(V) 
J -1    VT 

-  cos (-r) 
P(^) dö dV 

V 
-   max 

Jv 
mm 

P(V) 

-      77 

f 
J 77        .   -1, Vr 

p(ö) d0 dV 

V 

0 - Ö   . max      mm 

- max 

V    . 

-1      VT 
p(V) sin      (—) dV 

:Tiin 

when T  is small enough,   and the probability deno;ty function p{r) is 

dP(0<T  <r) 
o 

dr 0        - 9   . max      mm 

V 
.  max 

V     . 

_d_ 
dr 

mm 

sm     (—) p(V)dV 

V 

d( Ö        -   9   .  . max       mm) / 

max 

V     . 
mm 

p(V) VdV 

At    r = 0, 

V-17 

^^■^Ma^MMMMMM — -J- - ■ -■■* --^"■■'■-^■"--■ 



vmmmmms* ^JIIIIWBHUIIIIII   min , iiiijiinti*nM*w«i 

V 
max 

P(v) d( Ö        -   ß   .  ) J max        mm •' 
V 

p(V)  VdV 

mm 

V    . V 
mm +      max 

2d( ß        -   0       ) max        mm 

since the integral expression is  simply the average velocity for a velocity 

probability density function symmetrical about (V     .     +   V )/2. 
mm max 

For the tapered-velocity uniform-azimuth distribution,  Figures V-5 

and V-6 depict the time-lae probability density function P(T) at V    .   /V = 
mm      max 

0. 1  and V /V =   0.9,   respectively,   for specified  30     sectors.    In this 
min      max 

particular model,   the functions p(~) are smooth and continuous unless 

0 or    ,'1 is an odd integer multiple of  IT/2.     The probability density 
min max 

functions P(T) in Figure V-6 resemble those of Figure III-7, IV-2, and V-3; 

when the minimum and maximum velocities are nearly equal, the dominant 

influence on p( r) is apparently the :pccific angular range Q .<()<() 

of the uniform azimuthal distribution. 
mm max 

[ 
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ömin 

0        =   20 
max 

10 

o 

P(r) 
2V mm 

V 
mm 

P(T) 

mm 

0 =   92 
max 

T   =- 
V    . 

min 

' 
^     P(T) 

r 

Q =   206 
mm 

B        =   236° 
max 

P(T) 

278 
mm 

^ =   308 
max 

o 

PC") 

2V 

P(r) 
mm 

ömin =   154° 

0 =   164 
max -d 

V 
mm 

\; 

mm 

FIGURE V-5 

TIME-LAG PROBABILITY DENSITY FUNCTION FOR  THE TAPERED- 
VELOCITY UNIFORM-AZIMUTH MODEL AT 

V     .   /V =0.1 FOR VARIOUS 30° SECTORS 
mm      max 
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0   . =-io 
mm 

0       = ^o max 

mm mm 

min 

0   ■ min 

0 max 

P(T)     /f 
0    .     =134 
mm 

Ö        =   164( 

max 

T 

P(T)     t 

Ö 206 
mm 

Ö =   236C 

max 

-+-» 

278 

308 

2V 

P(T) 
min 

"d 

-d 

■4-» 

V V 

Q 

D 

mm mm 

FIGURE V-6 

TIME-LAG PROBABILITY DENSITY FUNCTION FOR THE TAPERED- 
VELOCITY  UNIFORM-AZIMUTH MODEL AT 
V        /V :   0.9 FOR VARIOUS 30    SECTORS 

mm      max 
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SECTION VI 

SUMMARY 

I r 

■A- 

This report has presented two algorithms for implementing Wiener 

adaptive multichannel filtering with distributed signal  models.     These algo- 

rithms may prove useful in eliminating or ameliorating problems previously 

encountered with maximum likelihood adaptive multichannel filtering.    Among 

these problems are mutual cancellation oi interfering events,   signal distor- 

tion,   and sensitivity to slight deviations from an ideal plane-wave signal 

model.     The two algorithms discussed require some method for estimating 

the crosscorrelation functions between the signal and the channels entering 

the adaptive beamformer.     These crosscorrelation functions are estimated 

by convolving the time-lag probability density function p(r) corresponding to 

a specified velocity-azimuth incoming-energy distribution with the signal 

autocorrelation function,   which is approximated by averaging the input-channel 

autocorrelation functions. 

Estimating the time-lag probability density function P(T) for various 

directionally-distributed signal  models is an interesting problem in its own 

right.    In this  report,   three basic models are described.     The first is an 

inverse velocity space model,   in which the signal-model  probability distri- 

butions are specified as a function of the two-dimensional  inverse velocity 
 »      —»    -»      -♦ —♦ . 

vector    u -   V/(V •   V),   where    V    is the incoming energy's apparent velocity 

in the plane of the array.     The second is a distributed ring model where all 

incoming energy is concentrated at a single apparent velocity    V    with respect 

to the plane of the array,   but is distributed over a range of azimuths according 

to a known probability density function p„(^).     The final  model is a velocity- 

azimuth space model,   in which the signal model is specifi   d both as a function 

of the apparent velocity    V   in the plane of the array and as a function of the 

arrival azimuth   0 . 
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